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Abstract. Collisional electronic energy-loss straggling has been treated theoretically on the basis of the
binary theory of electronic stopping. In view of the absence of a Bloch correction in straggling the range
of validity of the theory includes both the classical and the Born regime. The theory incorporates Barkas
effect and projectile screening. Shell correction and electron bunching are added on. In the absence of shell
corrections the Barkas effect has a dominating influence on straggling, but much of this is wiped out when
the shell correction is included. Weak projectile screening tends to noticeably reduce collisional straggling.
Sizable bunching effects are found in particular for heavy ions. Comparisons are made with selected results
of the experimental and theoretical literature.

PACS. 34.50.Bw Energy loss and stopping power – 52.40.Mj Particle beam interactions in plasmas

1 Introduction

In 1915, Bohr [1] predicted that the fluctuation of the
energy loss ∆E of a beam of charged particles penetrating
matter is characterized by the variance〈

(∆E − 〈∆E〉)2〉 = NRW (1)

with the straggling parameter W given by

W = WB = 4πZ2
1Z2e

4, (2)

where 〈∆E〉 is the mean energy loss over a travelled path-
length R, N the number of atoms per volume in the stop-
ping material, and Z1, Z2 the atomic numbers of beam
and material atoms, respectively.

Equation (1) assumes the stopping medium to be ran-
dom and the pathlength R sufficiently small so that the
variation with beam energy of the cross-sections responsi-
ble for energy loss can be ignored [2,3].

Equation (2) assumes free-Coulomb scattering be-
tween beam particles and the electrons of the stopping
medium. Bohr showed that unlike the mean energy loss,
straggling is rather insensitive to the binding of target
electrons. The underlying reason is the fact that the
integral

W =
∫
T 2dσ(T ) (3)

is dominated by large values of the energy transfer T
per collision event even though the differential cross-
section dσ(T ) is heavily peaked toward small T .

Equation (2), in conjunction with (1), seems to consti-
tute one of the most lasting and universally-valid results
of the theory of particle penetration. Its range of valid-
ity reaches far beyond the initial application area, i.e., α-
particles from radioactive sources. Nevertheless there are
limitations which, according to common knowledge, may
roughly be classified into three groups,
1. at low projectile speed, comparable to electron veloc-

ities in the target, W tends to slightly increase above
the Bohr value with decreasing velocity before drop-
ping toward zero [4],

2. at high speed, relativistic corrections beyond those
mentioned already by Bohr [1] become necessary [5]
and

3. charge exchange may not be neglected in general as a
source of energy-loss straggling [6].
This paper addresses the first group of phenomena

which is well separated from the second group because
of non-overlapping velocity regimes. Phenomena of the
third group need to be considered in comparisons with
experiment, but their theoretical study involves different
physics [7–11] and will be left out here.

Physical effects potentially causing deviations from
free-Coulomb scattering at low projectile speed are
primarily those that also affect the stopping force,
– binding of target electrons,
– orbital motion of target electrons,
– Barkas effect,
– projectile screening by accompanying electrons,
– interplay between Born approximation and classical-

orbit description of ion-electron scattering.
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Additionally for straggling,

– correlation between target electrons may be contribut-
ing and

– high-energy-transfer processes like electron promotion
may become noticeable even if insignificant in the stop-
ping force [12].

Although there have been made estimates of energy-
loss straggling at moderate and low projectile veloci-
ties [13–16], we are unaware of systematic attempts to
identify contributions from the physically distinct pro-
cesses listed above. In particular, information on the influ-
ence of the Barkas effect on straggling has been emerging
only recently [11] even though its contribution to the stop-
ping force has been studied extensively.

The binary theory of electronic stopping [17] has
proven to be a useful tool in the computation of stop-
ping forces over a wide range of ions and energies above,
around and below the stopping maximum. Good quan-
titative agreement has been achieved with experimen-
tal data for numerous ion-target combinations [18]. The
adopted energy-loss mechanism is Coulomb excitation of
target electrons.

We aim at treating the effects of electron binding, or-
bital motion, Barkas effect, projectile screening and cor-
relation down to velocities v ∼ v0 or E ∼ 0.025 MeV/u.
Stopping forces can be predicted down to ∼ 1 keV/u, but
with an increased error margin. Neither Z1 oscillations nor
electron-promotion effects are contained in the scheme.
This, as well as the fact that only limited experimental
data are available for test purposes, suggests caution with
regard to predictions of straggling below v0, based upon
this scheme.

2 Theoretical scheme

The basics of binary stopping theory have been described
in references [17,19], and an extensive documentation on
the computation of stopping forces including several add-
ons has appeared recently [18]. The purpose of the present
section is to add specific features pertinent to straggling.

The fundamental quantity in the binary theory is a
classical energy-loss function T (p, ωj) characterizing the
energy transfer by Coulomb interaction from a screened
projectile ion moving at an impact parameter p past a tar-
get electron bound harmonically by a frequency ωj . This
function is calculated nonperturbatively. It approaches the
free-Coulomb limit at small p and the Bohr function [20]
at large p.

From this we may obtain an expression for the strag-
gling parameter per target electron,

W0j =
∫ ∞

0

2πp dp [T (p, ωj)]
2
, (4)

from which one could obtain an expression for the strag-
gling parameter of an atom,

W0 =
∑

j

Z2fjW0j (5)

where Z2fj is the number of target electrons in the jth
shell and

∑
j fj = 1.

Equation (5) assumes target electrons to be statisti-
cally independent. The effect of correlations between tar-
get electrons will be discussed in Section 5. Screening and
Barkas effect are contained in equation (4), whereas allow-
ing for shell corrections is a second step involving kinetic
theory [21] which, for binary elastic scattering, provides
exact relationships between stopping parameters for a pro-
jectile moving through a medium with internal motion and
the corresponding parameters for a medium at rest. For
the straggling parameter this relation reads [21]

Wj =

〈
1

v|v − ve|3
[(

3
2

(
v2 − v · ve

)2

− 1
2

(v − ve)
2
v2

)
W0j (|v − ve|)

+
(
v2v2

e − (v · ve)
2

)

×m (v − ve)
2
S0j (|v − ve|)

]〉
j

, (6)

where ve represents the velocity vector of the target elec-
tron and S0j the stopping cross-section ignoring shell cor-
rection. The average is taken over the velocity distribution
of the jth target shell. This leads to the straggling param-
eter of an atom,

W =
∑

j

Z2fjWj . (7)

Unless stated otherwise, calculations to be reported below
refer to equation (5) (“no shell correction”) or equation (7)
(“shell correction included”).

3 Bare ions

We first consider stopping of bare ions. While shell correc-
tions may be switched on or off via equations (5, 7), the
Barkas effect is an inherent part of the scheme which can
be eliminated only by taking the average between output
for a projectile and its antiparticle.

3.1 H-Si

Figure 1 shows relative straggling, i.e. the ratio W0/WB

ignoring shell correction for protons and antiprotons in
silicon as well as the average between the two quanti-
ties. In accordance with previous experience the average
curve, i.e. the straggling parameter uncorrected for the
Barkas effect, barely shows a Bethe-Livingston shoulder.
For protons a pronounced shoulder is found which must
be caused by the Barkas effect and is evidently unrelated
to the Bethe-Livingston effect.
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Fig. 1. Relative straggling W0 (shell correction switched off)
for protons and antiprotons in silicon and average.

0

0.5

1.0

0.01 0.1 1 10

H+ - Si
Average
p- - SiNo shell correction

K shell

M shell

L shell

E/A
1
[MeV]

W
0/W

B

Fig. 2. Same as Figure 1 differentiated into target shells.

Figure 2 illustrates details, including the origin of the
nonmonotonic behavior in Figure 1. The dominating cause
is the fact that the K, L and M target shells have their
individual shoulders at 0.35, 0.13, and 0.038 MeV/u, re-
spectively. In addition one identifies small troughs which
are artifacts arising from classical resonance scattering on
an attractive screened-Coulomb potential [18]. Character-
istically for the Barkas correction, the shoulder is most
pronounced on a relative scale for the K shell even though
the L shell dominates on an absolute scale due to the pres-
ence of more electrons.

We may conclude that in the absence of shell correc-
tions the Barkas effect causes a dramatic difference be-
tween straggling parameters for protons and antiprotons.

Figure 3 shows the same system but now with the shell
correction included. Consider first the curve labelled “Av-
erage” which represents bare protons without a Barkas
correction. In accordance with conventional theory [4,22]
a pronounced shoulder is now observed at 2.1 MeV/u, i.e.,
at an energy about an order of magnitude higher than
what was found for the Barkas effect. This shoulder is
caused by orbital motion of target electrons, the veloc-
ity distribution of which is considerably broader than the
width of the shoulder observed without shell correction in
Figure 1. Therefore, that shoulder is essentially wiped out
by the shell correction.
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Fig. 3. Same as Figure 1 but shell correction switched on.
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Fig. 4. Same as Figure 2 but shell correction switched on.

Note in particular that the effect of the shell correc-
tion is more pronounced in the stopping of protons than of
antiprotons. This feature becomes particularly visible in
Figure 4 which differentiates between target shells. Here
the K shell experiences a shell correction with a shoulder
around 10 MeV/u which completely wipes out the shoul-
der at 0.35 MeV/u generated by the Barkas effect. Con-
versely, for the M shell, orbital motion does not give rise
to a noticeable shoulder, as is seen from the curve labelled
“Average”. Therefore, the shoulder observed for M-shell
straggling of protons in Figure 4 must be caused by the
Barkas effect. The effect of this can be seen in Figure 3
below 0.1 MeV/u, but it is very weak.

We may conclude that the Bethe-Livingston shoulder
seen in Figure 3 originates in shell corrections to the K
and L shell, that the observed Barkas splitting around the
shoulder is mainly due to the L shell, and that the M shell
gives rise to noticeable Barkas splitting but no pronounced
shoulder around and below 0.1 MeV/u.

3.2 H-C and Li-C

Figure 5 shows a similar behavior for hydrogen in car-
bon. The main quantitative difference is a movement of
the Bethe-Livingston shoulder toward lower velocities in
accordance with the Z2 dependence of the shell correction.
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Fig. 5. Relative straggling for protons and antiprotons in car-
bon as well as average. Thick lines: shell correction included;
thin lines: no shell correction.
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Fig. 6. Relative straggling for bare lithium and antilithium
ions in carbon as well as average.

Figure 6 shows similar information for lithium in car-
bon. In curves denoted “Average” the Barkas effect has
been eliminated by averaging between lithium and an-
tilithium. In comparison with H–C the shoulder caused by
the Barkas effect has moved further up in energy than the
one caused by the shell correction in accordance with the
Z1 dependence of the Barkas effect. It now gives rise to a
noticeable increase in the shoulder adding up to the Bethe-
Livingston effect. However, the practical significance of
this result is limited since the effect of projectile screening
is essential at energies �0.1 MeV/u, as will be seen below.

3.3 Bloch correction

The results quoted above were obtained from a classical-
orbit description of the scattering of a target electron on
the projectile. The upper limit of validity of such a de-
scription is defined by the Bohr criterion [2]

v < 2Z1v0 (8)

or E < Z2
1 × 0.1 MeV/u. All graphs shown above go be-

yond that limit.
Bloch’s stopping theory [23] provides the link between

the classical Bohr model and Bethe’s quantal perturbation
theory [24]. In binary stopping theory, the range of validity
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Fig. 7. Relative straggling for lithium in carbon (shell correc-
tion switched off) for frozen charge states 3+ to 0.
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Fig. 8. Same as Figure 7 but shell correction switched on.

of the classical model has been extended into the Bethe
regime by addition of an inverse-Bloch correction [25,26].

Lindhard and Sørensen [5] recently provided a substan-
tial extension of the Bloch theory. Essential in the present
context is their discussion of straggling in the nonrela-
tivistic regime. It was demonstrated that in the absence
of Barkas and shell corrections there is no Bloch correc-
tion to the straggling parameter. Therefore, unlike in case
of the stopping cross-section, no inverse-Bloch correction
is necessary in straggling to extend the range of validity
of the binary theory into the Bethe regime.

An expression for the straggling parameter was in fact
evaluated from the Bloch theory by Titeica [27] which
adds an extra term to the Bohr value. It was demonstrated
in reference [21] that this additional term is a shell cor-
rection and as such derivable from kinetic theory. There
is, therefore, no contradiction between the results of ref-
erences [5,27].

4 Dressed ions

Figures 7 and 8 show relative straggling for frozen-charge
Li ions in carbon with the shell correction switched
off and on, respectively. The curves labelled “3+” were
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Fig. 9. Relative straggling for oxygen in carbon (shell correc-
tion switched on) for frozen charge states 8+ to 0. The curve
labelled “equilibrium” is explained in the text.
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Fig. 10. Same as Figure 9 for argon in carbon.

already part of Figure 61. It is seen that screening affects
the shape of the straggling parameter below the shoulder
region, both for the shoulder generated by the Barkas ef-
fect in Figure 7 and by the shell correction in Figure 8.
The actual degree of screening appears to have surpris-
ingly little influence.

In this and several of the following figures a curve la-
belled “Firsov” has been included for orientation which
reflects Hvelplund’s [29] evaluation of Firsov’s energy-loss
formula for single collisions [30]. Apart from the fact that
Firsov’s formula was not designed for this purpose by its
author, it is a low-energy formula for v � v0.

Figures 9 and 10 show oxygen and argon in carbon
for different frozen charge states. Again the fully-stripped
ion experiences significantly larger straggling than the
screened ones although some dependence is now seen also
for lower charge states.

1 Somewhat surprisingly, Figure 7 indicates that W/WB

does not behave monotonically as a function of charge state
in the region above the shoulder. This feature is related to
the Barkas effect and was found to be quite pronounced in
impact-parameter-dependent stopping under channeling con-
ditions [28]. Inclusion of the shell correction (Fig. 8) reduces
the effect to below the error of the Bohr model, the binary the-
ory, and of even quite accurate straggling measurements. We
shall therefore refrain from following up this feature here and
now.

The equilibrium value of collisional straggling is given
by [9]

Wequil =
∑

J

PJW (qJ), (9)

where PJ denotes the equilibrium occupation of charge
state qJ . In applications of binary stopping theory, the cor-
responding expression for the stopping cross-section has
most often been replaced by S(〈q〉) with

〈q〉 =
∑

J

PJqJ , (10)

i.e. the stopping cross-section for an ion in the average
charge state. If the same is done for straggling, i.e.

Wequ �W (〈q〉) (11)

one obtains the curve labelled “equilibrium” in Figures 9,
10 and 11. Since the curves for low charge states are close
to each other, also the shape of the average is not sensi-
tive to the way how the average is taken. Hence this curve
can well be utilized to estimate collisional straggling in
charge equilibrium within the accuracy of present-day ex-
periments2.

Figure 11 has been included because of the importance
of these systems (He, B and P in Si) in ion implantation
and analysis. Qualitative trends are very similar to what
was found for carbon, but the variation with charge state
appears to be less pronounced for the heavier target. This
is a consequence of the competition between screening ra-
dius and adiabatic radius [31]: the higher I-value of Si
causes a smaller adiabatic radius compared to the carbon
target and hence a smaller influence of screening on the
stopping integral.

5 Correlation

Correlations in straggling have been analysed in various
contexts [3,15,22,32]. In a classical impact-parameter pic-
ture the straggling parameter per target atom may be
written as

W =
∫

d2p
〈(∑

Ti(pi)
)2

〉

=
∫

d2p
∑
i,j

〈
Ti(pi)Tj(pj)

〉
, (12)

where Ti(pi) is the energy loss to the ith target electron
at an impact parameter pi and p the impact parameter

2 The reader may note that the curve labelled “equilib-
rium” does not seem to coincide completely with the curve
labelled 0+ in the velocity regime where the ion is essentially
neutral. This feature is due to the shell correction in combi-
nation with equation (11) because the shell correction mixes
contributions from higher and lower velocities. This does not
occur if the correct expression (9) for equilibrium straggling is
used.
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Fig. 11. Relative straggling for He, B and P ions in Si for
several frozen charge states. For curves marked “equilibrium”
see text.

with respect to the nucleus. The average is taken over the
spatial distribution of target electrons around the nucleus.

We may split the sum into one part with i = j which
reduces to the one-electron straggling parameter equa-
tion (5) or (7) that has been evaluated already, and a
correlation term reading

∆W =
∫

d2p
∑
i�=j

〈
Ti(pi)

〉〈
Tj(pj)

〉
, (13)

where the average has been factorized, assuming that the
internal motion of target electrons can be approximated
as uncorrelated. The term ∆W is nevertheless called a
correlation term because it hinges on the spatial proximity
of two target electrons in an atom.

The quantity

〈Ti(pi)〉 =
∫

d3ri|ψi(ri)|2Ti(p− ρi) ≡ T ′
i (p) (14)

represents the mean energy transferred to the ith electron
as a function of p, the impact parameter to the target nu-
cleus. Here, ψi(ri) is a single-particle wave function of a
target electron and ρi the component of the electron co-
ordinate ri perpendicular to the projectile velocity. The
difference between Ti and T ′

i is substantial: Ti depends
on the impact parameter to a target electron and hence
approaches 2mv2 – or a shell-corrected maximum energy
transfer – at p = 0. Conversely, T ′

i may well have a mini-
mum at p = 0 because the chance of hitting a target elec-
tron head-on is greater at a nonvanishing distance from
the nucleus.

With this we may write

∆W =
∫

d2p

(∑
i

T ′
i (p)

)(∑
j

T ′
j(p)

)

−
∫

d2p
∑

i

(
T ′

i (p)
)2

. (15)

Here,
∑

i T
′
i (p) ≡ T ′(p) is the average energy transfer to

the atom at an impact parameter p to the nucleus.
Equation (15) but without the second term was found

by Besenbacher et al. [15] on the basis of an electron-
gas model. We note that the second term is essen-
tial since in its absence also a one-electron atom would
show correlation.

However, since the second term decreases in signif-
icance with increasing number of target electrons it is
tempting to simplify the evaluation. For helium as a
target which has only one shell, the integrand reads
4(T ′

K(p))2 − 2(T ′
K(p))2 = 2(T ′

K(p))2, i.e., the second term
in equation (15) has half the magnitude of the first one.
This has been taken into account in Figure 12. For the
heavier targets we drop the second term but compensate
approximately by applying a factor of 1−1/Z2 to the first
term. This leads to the correct result for Z2 = 1 and 2. An
explicit evaluation for Ar in Si resulted in a ratio � 0.1
between the second and the first term, almost indepen-
dent of energy while the above estimate yields 0.07. This
difference is well within the overall error of the present
theory.

Figure 12 shows values of ∆W/WB calculated in this
way for He and Ar ions in He, C and Si targets. In accor-
dance with previous experience [33] the correction goes
through a maximum near the maximum of the stopping
force, and its magnitude increases with increasing Z2, al-
though this increase is less than linear around the maxi-
mum. The absolute magnitude is greater for Ar ions than
for He at least around the maximum, and the absolute
magnitude for He–He is consistent with the estimate in
reference [15].

It was found in reference [15] that the correlation ef-
fect may have comparable magnitude as charge-exchange
straggling. In view of a similar dependence on ion energy
the two effects may be difficult to separate. While our
findings are consistent with this, we need to add a word
of caution about the absolute magnitude of the present
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Fig. 12. Correlation term in straggling. See text.

estimates which appear high, especially for argon ions,

– most of all, target electrons have been treated as in-
dependent both in the intrinsic atomic motion and in
the excitation process. Now, for a helium target the
intrinsic motion of the two electrons is known to be
anticorrelated to a certain extent. This gives rise to
less straggling, although it is not obvious how to in-
corporate this into the present scheme;

– conversely, for heavy ions the excitation process is
known to be correlated [34]. That this is affects stop-
ping forces is one major reason for the present limita-
tion to Z1 � 18 in applications of the binary theory.
This is possibly even more influential in straggling;

– also the combination of average ion charge and shell
correction mentioned in the footnote on page 205 may
be assumed to act here and to cause the somewhat
peculiar low-velocity behavior for argon ions.

In summary, results of this paragraph are expected
to express tendencies but are considered less quantitative
than what was found for the previous effects. These results
will not be incorporated into the estimates shown in the
following section.

6 Discussion

Figure 13 shows experimental straggling data from
Cowern et al. on carbon in aluminium. FWHM strag-
gling data given in reference [35] have been converted into
W/WB assuming Gaussian profiles. The solid line shows
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Fig. 13. Relative straggling for C–Al according to Cowern
et al. [35]. Solid line: collisional straggling from binary theory
excluding correlation. See text.
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Fig. 14. Relative straggling for H, D and He in Ge. Experi-
mental data from: [36]. Predictions of the binary theory and
of [14].

collisional straggling calculated from the binary theory ig-
noring correlation. This curve agrees closely in the over-
lap region with the evaluation of the Bethe-Livingston for-
mula given in reference [35]. Cowern et al. showed that the
difference between their data and the Bethe-Livingston
curve was consistent with an estimate of charge exchange
straggling based on reasonable cross-sections for charge
exchange.

Figure 14 shows relative straggling for protons,
deuterons and alpha particles in germanium. The exper-
imental data from reference [36] are similar to numerous
data on other systems reported by the same group (cf. [37]
and references quoted there). Those results were compared
to the prediction of Chu [14]. Results from binary theory
have been added here. While there is found better agree-
ment between experiment and binary theory than with
Chu’s prediction at the low-energy end, the absence of
a Bethe-Livingston shoulder in the experimental data is
striking.

This feature is met frequently in the literature but is
not universal. Shoulders were found e.g. in reference [15].
We note that experimental setups for measurement of
energy-loss spectra frequently operate with a very narrow
acceptance angle of the detector. Since straggling is pre-
dominantly due to close encounters, a significant fraction
of ions contributing to electronic straggling could remain
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Fig. 15. Relative straggling of protons in Ge. Contributions
from individual target shells.
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Fig. 16. Straggling for Li ions in noble gases: calculations
disregarding correlation effect compared with measurements
of Andersen et al. [38].

undetected because of single and multiple elastic scatter-
ing on the target nucleus.

Figure 15 shows contributions to straggling from eight
target shells in Ge. It is seen that the Bethe-Livingston
shoulder is essentially made up by 2p and 3d electrons. The
corresponding shell radii are 0.066 and 0.148 Å, respec-
tively. At the point of bend-over, � 0.4 MeV/u, Ruther-
ford’s law predicts scattering angles of 1 and 0.5 degrees
at impact parameters 0.066 and 0.148 Å for both protons
and α particles. According to available information, the
experimental setup underlying reference [36] allowed for
detection of particles scattered at somewhat larger angles.
Hence, this effect may not constitute a full explanation for
the absence of shoulders.

Figure 16 shows a comparison with measurements of
Andersen et al. for lithium ions in He, Ne and Ar [38].
Data for other gases were left out of the comparison: for
molecular gases the correlation effect complicates the mat-
ter, and for krypton and xenon our database is not yet
adequate. Quite good agreement is found for Li–Ar and
Li–Ne above v0, while the theory appears to overestimate
straggling for the Li–He system. While caution has been
expressed above with regard to the applicability of the the-
ory at such low velocities, the fact that the theory seems
to overestimate straggling appears provoking.

Figure 17 shows a comparison with theoretical predic-
tions of Kaneko [39] based on a free-electron-gas model.
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Fig. 17. Relative collisional straggling for O–Al, Contribution
from individual shells. Binary theory ignoring correlation, and
prediction of Kaneko [39].
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Fig. 18. Relative straggling for H, He, Ne and Ar ions in
free electron gas equivalent with the average electron density
of metallic lithium. Equilibrium charge state assumed. Low-
and high-v expansions reflect expansions mentioned in refer-
ence [40].

The prediction of the binary theory for the total straggling
effect lies higher by up to about a factor of two. Only part
of this can be caused by the missing Barkas effect in refer-
ence [39]. It seems that the contribution from 2s electrons
was neglected altogether. The results for the M shell agree
well at low and high velocities, and the difference at inter-
mediate velocities may be ascribed to the Barkas effect.
Figure 17 indicates that the discrepancy originates in the
L shell, where an electron-gas model without a Barkas
correction cannot be expected to be adequate.

Figure 18 shows results for a free-electron gas with the
average electron density of metallic lithium corresponding
to a density parameter χ2 = v0/πvF = 0.375. Results for
hydrogen are compared with the low- and high-velocity ex-
pansions of reference [40]. It is seen that the binary theory
yields a much less pronounced shoulder than an uncriti-
cal extrapolation of those expansions, in agreement with
results of reference [13]. In that work the shoulder region
was evaluated numerically without series expansion in v
or 1/v, and shoulder maxima of less than 1.1 were found.
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7 Concluding remarks

In our opinion the main achievement of this work is in-
sight into the role of the Barkas effect in straggling and a
clarification of its interplay with the shell correction and
projectile screening. The role of screening has been stud-
ied previously [16,39,41,42], and numerous investigations
were devoted to shell corrections in straggling, but the
Barkas effect has been a major hurdle especially in heavy-
ion stopping and straggling.

Figures 1–6 indicate that consideration of the Barkas
effect without simultaneous consideration of the shell cor-
rection may be misleading and tends to overestimate the
magnitude of the correction.

Screening, on the other hand, reduces the overall in-
teraction and hence also straggling, but somewhat surpris-
ingly the major part of this reduction requires compara-
tively little screening, as is seen from Figures 7–11.

Some progress has been achieved on correlations. As
mentioned above we do not consider these results to con-
stitute the last word on this delicate and apparently diffi-
cult problem.

While we expect that several of these results may
constitute useful building stones in a comprehensive de-
scription of energy-loss straggling in particular for heavy
ions, we emphasize that several important aspects have
not been touched upon. Charge-exchange straggling and
electron promotion have only been mentioned. The shape
of the energy-loss profile – which requires explicit or im-
plicit consideration of higher moments – has not been a
topic of the present paper. Finally, problems of experi-
mental geometry have only been mentioned briefly but
unquestionably need consideration, e.g. along the lines of
what has been done in references [43,44] for nuclear stop-
ping.

Thanks are due to Johan Malherbe and Erich Friedland for pro-
viding information about their experimental setup. This work
has been supported by the Danish Natural Science Research
Council (SNF).
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